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Abstract

One of the key tasks in machine learning
for tabular data is feature engineering. Al-
though it is vital for improving the perfor-
mance of models, it demands considerable hu-
man expertise and deep domain knowledge,
making it labor-intensive endeavor. To ad-
dress this issue, we propose a novel frame-
work, FeRG-LLM (Feature engineering by
Reason Generation Large Language Models),
a large language model designed to automat-
ically perform feature engineering at an 8-
billion-parameter scale. We have constructed
two-stage conversational dialogues that enable
language models to analyze machine learn-
ing tasks and discovering new features, ex-
hibiting their Chain-of-Thought (CoT) capa-
bilities. We use these dialogues to fine-tune
Llama 3.1 8B model and integrate Direct Pref-
erence Optimization (DPO) to receive feed-
back improving quality of new features and the
model’s performance. Our experiments show
that FeRG-LLM performs comparably to or
better than Llama 3.1 70B on most datasets,
while using fewer resources and achieving
reduced inference time. It outperforms other
studies in classification tasks and performs
well in regression tasks. Moreover, since it
does not rely on cloud-hosted LLMs like GPT-
4 with extra API costs when generating fea-
tures, it can be deployed locally, addressing se-
curity concerns.

1 Introduction

While deep learning has shown remark-
able performance on diverse structure of datasets
and gained significant attention, classical ma-
chine learning models continue to play a piv-
otal role across various industries to satisfy inter-
pretability requirements and accommodate com-
putational constraints. These models help orga-

*equal contribution.
†corresponding author.

nizations make data-driven decisions and build
a specialized database of newly discovered key
features that significantly enhance model perfor-
mance. However, uncovering these features re-
quires considerable expertise and analytical skills
on the part of data scientists, creating a strong de-
mand for highly qualified professionals.

Since recent large language models (LLM) have
achieved superior performance (Achiam et al.,
2023; Dubey et al., 2024) in various evalua-
tion metrics due to their extensive knowledge
and advanced text-understanding capabilities, sev-
eral studies have applied language models to fea-
ture engineering (Hollmann et al., 2024; Han
et al., 2024). They have successfully proposed
methodologies for classification tasks, but they
rely on cloud-hosted LLMs such as OpenAI GPT
(Achiam et al., 2023) so that it cannot be used for
sensitive data and remain limited to classification
tasks.

Therefore, we propose FeRG-LLM, a novel
framework that optimizes a language model to dis-
cover valuable features for machine learning mod-
els. We aim for the language model to fully un-
derstand machine learning tasks related to tabu-
lar data and generate meaningful features that im-
prove performance. To this end, we construct a di-
alogue dataset that thoroughly captures the task
requirements and yields meaningful features. In
the next stage, we train the 8B-scale Llama 3.1
model (Dubey et al., 2024) on these dialogues and
then aligned our model using Direct Preference
Optimization (DPO) to linguistically generate a
more refined rationale for feature creation. Figure
1 presents the overall framework.

Considering that binary classification tasks are
critical in industry, we extensively evaluate our
model on 14 relevant datasets. Despite being 8B-
scale, the results show that our model achieves
performance comparable to that of a 70B model
and outperforms other recent studies. In addition
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Figure 1: Overall framework of FeRG-LLM. The method first generates a two-stage dialogue related to feature
discovery and then performs SFT using LoRA. It then optimizes the language model to provide reasoning feedback.

to experiments on classification tasks, we demon-
strate that our model can be readily applied to
other problem types, such as regression, using four
additional datasets.

Our contributions are threefold:

• We propose a novel framework, FeRG-
LLM, that harnesses chain-of-thought rea-
soning through a two-stage dialogue pro-
cess in a large language model and integrates
feedback via DPO to better understand ma-
chine learning tasks on tabular data so that
valuable features are discovered.

• Our framework uses Llama 3.1 8B which can
be deployed on a single GPU so that it can
be used in local environments. Nonetheless,
it matches or sometimes even exceeds the ca-
pabilities of a 70B model and related work.
It greatly reduces resource requirements and
eliminates data security concerns making it
highly suitable for enterprise adoption.

• Our method produces executable Python
code for feature generation, eliminating man-
ual effort and identifying overlooked pat-
terns. By leveraging only variable names and
descriptions, it formulates features without
distribution analysis. This automation accel-
erates data-driven decisions while boosting
overall efficiency.

2 Related Work

Feature Engineering with Language Models
There have been studies of LLMs in the context of
feature generation problems for tabular datasets.

For instance, CAAFE (Hollmann et al., 2024) pro-
vides OpenAI GPT with information about a spe-
cific Machine Learning (ML) problem including
dataset information and prompt it to suggest new
features, along with Python code and rationales. It
also incorporates feature selection based on fea-
tures proposed by GPT. However, this approach
focuses on small-scale datasets and requires in-
cluding variable descriptions, specific values, and
details about missing data in the prompt. This ap-
proach makes working with large-scale datasets
difficult and handling security issues challenging,
limiting its applicability in corporate or academic
research.
Another study by Han et al. (2024) introduces
FeatLLM which creates rules to generate binary
features from given data using a few-shot ap-
proach. It provides specific data values and corre-
sponding labels to OpenAI GPT to generate binary
feature representations for classification. Gener-
ated features are used in a linear layer to build
a classification model. However, its generation of
only binary features may limit the diversity of fea-
ture engineering and offer limited linguistic inter-
pretability.
We compare the capabilities of FeRG-LLM with
these models as outlined in Table 1 and found that
it exhibits several advantages over other models.

Chain-of-Thought Guiding models to solve
complex problems through step-by-step reasoning
similar to human thinking is referred to as Chain-
of-Thought (CoT), and it has become a significant
area of research in the field of LLMs. The study
(Wei et al., 2022) shows that large language mod-
els possess exceptional problem-solving abilities



Criteria CAAFE FeatLLM FeRG-LLM

Create contextual features by understanding the dataset and modeling objectives? ✓ ✓ ✓

Operate without explicitly specifying operators such as inequalities in the prompt? ✓ ✗ ✓

Applicable to tasks beyond classification (e.g., regression)? ✗ ✗ ✓

Produce features at the point of generation without external API like GPT-4? ✗ ✗ ✓

Generate features without requiring specific variable values in the prompt? ✗ ✗ ✓

Table 1: The capabilities of FeRG-LLM are compared with those of other recent models including CAAFE (Holl-
mann et al., 2024) and FeatLLM (Han et al., 2024). A ✓ indicates that a criterion is met while a ✗ indicates that it
is not.

on complex tasks by generating intermediate rea-
soning steps in text, rather than solely predicting
the final answer.
Meanwhile, Magister et al. (2022) notes that CoT
is less effective for smaller models. They demon-
strate that training smaller models on reasoning
patterns from larger models can partially succeed
in reproducing CoT. However, they emphasize that
this approach relies on the performance of teacher
model, making it challenging to enhance the rea-
soning capability of smaller models.
Nevertheless this study provides insights into the
potential for achieving CoT capabilities even in
smaller models by focusing on specific tasks.
Building on these insights, we employ a two-stage
dialogue framework to achieve CoT abilities. This
approach fosters a robust understanding of com-
plex machine learning problems and helps uncover
meaningful features.

Direct Preference Optimization Rafailov et al.
(2024) introduces Direct Preference Optimization
(DPO) a method for aligning language models by
utilizing human preference data. In contrast the
approach of training language models using the
Reinforcement Learning from Human Feedback
(RLHF) method as proposed in Bai et al. (2022);
Ouyang et al. (2022) requires training a reward
model before optimizing a language model using
the PPO algorithm (Schulman et al., 2017). DPO
directly optimizes language models by leverag-
ing preference data, eliminating the need to train
a reward model. The preference dataset D =

{(x(i), y(i)l , y
(i)
w )}Ni=1 is collected from human an-

notators who rank responses by preference, where
yl represents the less preferred response and yw
the more preferred one.
Studies have extensively investigated the imple-
mentation of DPO in LLMs. Allam (2024) pro-
poses BiasDPO, designing DPO training to pri-

oritize the generation of unbiased text on sensi-
tive topics such as gender, race, and religion. They
demonstrate that this approach can effectively and
reliably mitigate bias. Yang et al. (2024) demon-
strates that by assigning different weights to re-
sponses based on the strength of preferences, it is
possible to generate responses that better reflect
human preferences. Zeng et al. (2024) improves
the accuracy of language models in writing and
language generation by optimizing at the individ-
ual token level, as opposed to the traditional meth-
ods that optimize at the sentence or task level.
For our study, we apply DPO instead of RLHF, as
it enables automatic feedback on generated ratio-
nale in resource-constrained settings. This ensures
stable feature generation, boosting machine learn-
ing performance.

3 Methodology

In this section, we present our FeRG-LLM frame-
work. Feature engineering is not about finding a
single correct solution. It requires deep data under-
standing and the ability to derive meaningful in-
sights through ML and domain expertise. To equip
LLMs with such capabilities, we construct a two-
stage dialogue dataset for supervised fine-tuning
and utilize DPO to offer feedback on the ratio-
nale behind feature generation. Furthermore, our
framework is designed to efficiently handle large-
scale datasets with numerous features and sam-
ples, ensuring flexibility and scalability. For space
constraints, we provide detailed SFT and DPO
training setups, including learning rate, configura-
tion, and other settings, in Appendix D.

3.1 Two-stage Dialogue for Feature
Engineering

Two-stage Dialogue Generation Two-turn dia-
logue dataset is constructed to leverage the lan-
guage model’s CoT reasoning capabilities using



[USER]
domain : < domain information >
type: < classification/regression/etc >
present variable in dataframe:
<feature1 name> : <feature1 description>
<feature2 name> : <feature2 description>
...

Provide key ideas for creating new derived
variables to improve the performance of the
following ML problem using the given dataset.

Machine Learning PROBLEM: <purpose of data
analysis>

[LLM Assistant]
1. definition: 1st new feature definition...

- 1st new feature description...

2. definition: 2nd new feature definition...
- 2nd new feature description...

...

[USER]
Create new features in Python code to enhance
machine learning performance using the ideas
you provided.

[LLM Assistant]
# 1. 1st new feature.
df[‘1st new’] = ...

# 2. 2nd new feature.
df[‘2nd new’] = ...

...

Figure 2: Example of two-stage dialogue that facili-
tates the LLM’s reasoning process. The first step in-
volves conceptualizing core ideas, followed by the sec-
ond step, where these ideas are actualized through the
creation of Python code.

about 7,190 documents, including papers and ma-
terials with data analysis or modeling. GPT-4o-
mini API is employed to extract the ML-relevant
attributes and contextual task information from
each document which is then used to construct a
conversational dataset.
The extracted information involves identifying the
data domain, describing the variables, clarifying
the machine learning problem and its type such as
regression or classification, and detailing any in-
novative features. The specific API prompts used
are provided in Appendix A.

Reasoning Process We reformat the API-
extracted information into a two-step dialogue
structure to effectively leverage CoT reasoning
ability in 8B-scale LLM. In the first turn, the
user provides overall information for feature en-
gineering — domain and variables of dataset, the

analysis objective, and the ML problem being ad-
dressed. At the end of the prompt, the user explic-
itly instructs the model to provide key ideas for de-
riving new features. Then the LLM generates the
fundamental ideas for creating new features. It is
noteworthy that the prompt presents dataset infor-
mation solely as variable names and descriptions,
thereby relieving data analysts from the need to
manually examine distributions of each variable.
In the second turn, the model generates Python
code to create new features based on the key ideas
proposed in its first response. The specific dia-
logue prompts are shown in Figure 2. It should
be noted that by directly outputting Python code,
feature engineering and evaluation can be fully
automated. Finally, we carry out supervised fine-
tuning methodology LoRA (Hu et al., 2021), ob-
taining the fine-tuned model πSFT.

3.2 Aligning Language Model with DPO

Preference Feedback To ensure FeRG-LLM
generates stable and high-quality features, we per-
form feature engineering with πSFT on eight tab-
ular datasets designed for binary classification.
These datasets are selected to reflect diverse as-
pects of ML tasks, forming a robust evaluation set.
Detailed information is provided in Appendix E.
As is common among data scientists, we use Area
Under the Curve (AUC) as the reference metric.
Based on this, we provide feedback on the gener-
ated rationales.

Preference Data Composition For each
dataset, we begin with a prompt x as shown in
Figure 2 that contains comprehensive informa-
tion about the machine learning task. Rationale
responses R are sampled from πSFT( ·|x). The
language model subsequently produces final
features F , and we compute the AUC Z using
XGBoost (Chen and Guestrin, 2016) when the
features F are included. During inference, we
set the temperature to 1.4 and top-p to 0.9. We
set this higher temperature to encourage broader
feature exploration while ensuring that the model
consistently provides rationales and Python code
as intended. This process is repeated for 30 itera-
tions, yielding the sets of rationales {Ri}30i=1 and
features {Fi}30i=1. In fact, we use all combinations
of the generated rationales to create preference
data, as all cases are explained in the following
description.
For each iteration, we compare the AUC value



Z obtained with the derived feature to the
baseline AUCbase from fitting XGBoost to the
original dataset. If Z is greater than AUCbase, the
corresponding output is stored in

Dpos
dataset = {(Rpos

1 , F pos
1 , Zpos

1 ), . . . }

otherwise, it is stored in

Dneg
dataset = {(Rneg

1 , F neg
1 , Zneg

1 ), . . . }

We consider two specific criteria: absolute and rel-
ative preferences.

• Absolute preference Within each dataset, we
form all possible combinations of positive
and negative rationale pairs using instances
from Dpos

dataset and Dneg
dataset. In each pair, the

Rpos included in Dpos
dataset is labeled as "cho-

sen," while the Rneg included in Dneg
dataset is

labeled as "rejected."

• Relative Preference We form pairs of ra-
tionales exclusively within each of Dpos

dataset

and Dneg
dataset. For each pair we compare their

AUC scores Z. The rationale with the higher
score is labeled "chosen" and the other "re-
jected."

Since every possible combination of rationales
generated by the LLM falls under one of the two
criteria, we construct the preference dataset us-
ing all pairs. Finally, we define the preference
dataset as D = {(x(i), r(i)+, r(i)−)}Mi=1, where
r+ represents the chosen rationale, r− represents
the rejected rationale and M is the number of all
possible combinations. We optimize the language
model πθ to minimize the objective from Rafailov
et al. (2024):

LDPO(πθ;πSFT)

= −E(x,r+,r−)∼D

[
log σ

(
p(r+ | x)− p(r− | x)

)]
where p(·|x) = β log πθ( · | x)

πSFT( · | x) and σ(·) is a
logistic function. The parameter β, which we set
to 0.1 during training, controls the deviation from
πSFT.

4 Experiments

4.1 Experimental Setup
To evaluate how effectively FeRG-LLM performs
feature engineering, we design a method that mir-
rors the process data scientists follow when dis-
covering new features. Since they refine feature

through trial and error, our approach replicates
their workflow, enabling us to assess the feature
generation capability of LLM. The hardware setup
is introduced separately in Section 4.5, along with
an analysis of inference time.

AUC evaluation Method We use various tabu-
lar datasets, each with its own ML objective, to
evaluate the quality of our model-generated fea-
tures. For each evaluation dataset, the experiment
is repeated 7 times, measuring the mean and stan-
dard deviation for each experiment as detailed in
the pseudocode provided in Algorithm 1. For bi-
nary classification tasks, we employ XGBoost for
model fitting using AUC as the evaluation met-
ric based on the ROC curve. When fitting the ML
model, we split the data into training and testing
sets at an 8:2 ratio and perform simple hyperpa-
rameter tuning for XGBoost.

Algorithm 1 AUC Evaluation Method
1: Let N ← {# of experiments}
2: Let L← {Max iterations without improvement}
3: Let K ← {Required improvements}
4: Calculate Abasic using XGBoost on the dataset {Baseline

AUC}
5: for i← 1 to N do
6: Initialize c← 0, t← 0
7: Initialize set Si ← ∅ {Set to store improved AUCs}
8: while c < K and t < L do
9: Obtain Acurr from model

10: if Acurr > Abasic then
11: Add Acurr to Si

12: c← c+ 1
13: t← 0
14: else
15: t← t+ 1
16: end if
17: end while
18: Save Si for experiment i
19: end for
20: Collect the maximum AUC values from S1, S2, . . . , SN

(i.e., Amax,i = max(Si)) into a set S, then compute its
mean and standard deviation.

Experiment Execution We utilize FeRG-LLM
with a prompt containing dataset and ML task in-
formation, setting the temperature to 1.4 and top-
p parameter to 0.9. The model generated Python
code for feature creation, which was subsequently
executed to produce a dataset with the newly
added features.
If at most five features are generated we perform
a exhaustive search to evaluate AUCs for all com-
binations and select the one with highest. For six
or more, we evaluate each one individually as well
as the entire set for efficiency. This procedure is



Dataset

Method Bank Nhanes Diabetes Cultivar Credit Ethereum Churn

XGB 93.19 75.08 79.28 70.64 81.65 87.91 92.12
CAAFE 93.21±0.32 74.47±0.43 81.29±1.28 71.27±2.28 82.67±1.65 87.94±0.17 92.45±0.51

FeatLLM 80.05±0.62 66.57±0.71 78.66±0.47 69.52±2.23 50.64±7.19 91.22±0.73 79.91±0.79
Llama 3.1 70B 93.36±0.05 76.30±0.42 83.12±0.38 76.38±0.38 84.82±0.27 97.43±0.29 93.25±0.27
FeRG-LLM 93.88±0.51 76.23±0.40 82.43±0.34 78.34±2.74 85.07±0.67 97.03±0.60 93.22±0.14

Dataset

Method Ad-click Aging-npha Infrared-t Ilpd-indian Support2 Heart-failure Glioma

XGB 63.85 56.97 85.74 79.48 85.28 88.57 91.13
CAAFE 65.41±0.65 58.42±1.94 86.30±0.44 79.48±0.00 85.42±0.05 87.67±0.62 91.11±0.25

FeatLLM 51.18±0.57 59.16±0.75 80.48±0.53 82.61±1.17 56.90±7.96 80.77±1.08 73.51±3.28
Llama 3.1 70B 70.67±0.61 61.47±0.83 87.49±0.28 82.94±0.94 85.72±0.06 89.66±0.29 92.04±0.44
FeRG-LLM 81.55±8.64 60.38±0.78 87.42±0.27 83.83±0.51 85.76±0.16 90.17±0.33 91.75±0.30

Table 2: The overall mean AUC and standard deviation for major models, including FeRG-LLM, are presented.
XGB, the baseline model (Chen and Guestrin, 2016), achieved an AUC of 80.78 without feature engineering.
After each model generated features for 14 binary classification tasks, AUC scores were compared : CAAFE
scored 81.22, FeatLLM 71.51, Llama 3.1 70B 83.9, and FeRG-LLM achieved the highest at 84.79. For FeatLLM,
MICE (Van Buuren and Groothuis-Oudshoorn, 2011) was applied to handle missing values, as recommended in
the original paper.

repeated until K 1 improved AUC outputs are ob-
served and the best value is recorded. The model
terminates after L iterations if there is no improve-
ment.

Datasets We prepare datasets from the UCI
Repository, representing standard machine learn-
ing problems, including Bank Moro and Cortez
(2014), Nhanes UCI Machine Learning Reposi-
tory (2019), Cultivar Rodrigues de Oliveira and
Mario Zuffo (2023), Ilpd-indian Ramana and
Venkateswarlu (2022), Glioma (Tasci and Zhuge,
2022), Support2 Knaus et al. (1995), and Heart-
failure UCI Machine Learning Repository (2020).
Additionally, we obtain datasets from Kaggle, in-
cluding Diabetes, Credit, Ethereum, Churn, and
Ad-click, to assess their applicability in real-world
classification tasks. Also, there is a potential risk
that the dialouge dataset might contain direct in-
formation about the evaluation sets. To address
this, we additionally include the recent datasets :
Aging-npha (UCI Machine Learning Repository,
2017) and Infrared-t (Wang et al., 2021) from
the UCI Repository. Detailed information on each
dataset, including data size, label ratio, and the
specific machine learning problem, is provided in
Appendix F.

1We conduct experiments setting N = 7, L = 15, and
K = 3.

4.2 Main Results
Baselines We evaluate our method with CAAFE
(Hollmann et al., 2024), FeatLLM (Han et al.,
2024) and Llama 3.1 70B. In the original frame-
work of CAAFE, TabPFN (Hollmann et al., 2025)
is used for model training and providing criteria
such as AUC and ACC for feature selection. How-
ever, we replace it with XGBoost because TabPFN
struggled to handle large datasets such as Bank
and Ethereum, and often fell short compared to
XGBoost in various experiments. FeatLLM gener-
ates features with a GPT-based API using 16 data
points and trains a linear layer on up to 128 data
points. To further investigate the model’s capabil-
ities, we test a setup where FeatLLM generated
features using 64 data points instead of 16, and the
linear layer is trained on the entire dataset instead
of 128 data points. After evaluating multiple con-
figurations, we report the highest observed AUC.
Furthermore, we include the Llama 3.1 70B
model, which has approximately nine times more
parameters than the 8B model, offering signifi-
cantly greater capacity for reasoning and knowl-
edge retention. This inclusion allows for a mean-
ingful comparison between a large-scale model
and a more resource-efficient fine-tuned alterna-
tive. All results are presented in Appendix C.

Performance Comparison Table 2 presents
overall AUC evaluation results. FeRG-LLM



ML task
Prompt
(NHANES)

[Domain] Medical [Type] classification

[Present variable in dataframe]
riagendr: Respondents Gender,
paq605:If the respondent engages in moderate or vigorous-intensity sports,
fitness, or recreational activities in the typical week,
bmxbmi: Respondents Body Mass Index,
lbxglu: Respondents Blood Glucose after fasting,
diq010:If the Respondent is diabetic,
lbxglt: Respondents Oral ,
lbxin: Respondents Blood Insulin Levels

Provide key ideas for creating new derived variables to improve the performance of the following ML
problem using the given dataset.

[Machine Learning Problem] for predicting the given person’s age group from the record.

Without DPO
alignment
Rationale

definition: interaction term between engagement in activities and bmi, useful to assess the joint effect
of these two features on aging risk.
consider relationships between physical activity (as indicated by paq605), body metrics (such as
bmxbmi), and glucose levels (lbxglu) could help model aging risks as they interact to influence
age-related factors.

definition: average glucose levels adjusted for diabetic status, helping to evaluate the diabetic ef-
fects on glucose.
interaction features can provide insights into how these different metrics relate to aging, enabling
improved predictions.

Python code df[’activity_bmi_interaction’] = df[’paq605’] * df[’bmxbmi’]
df[’adjusted_avg_glucose’] = df[’lbxglu’].where(df[’diq010’] == 1, 0)

AUC 75.31

FeRG-LLM
Rationale

definition: the ratio of body mass index (bmi) to blood glucose levels, which might indicate weight
management relative to glucose status.
the features represent a combination of health metrics that can be interrelated. for example, body mass
index (bmi) in relation to blood glucose and activity levels might shed light on overall health status
more effectively than examining each variable in isolation.

definition: the average of bmi and blood glucose levels to understand overall health status more
effectively.
interaction between bmi and blood glucose might provide insights into the relationship between weight
and glucose metabolism.

definition: the ratio of activity levels to blood glucose, depicting how physical activity might relate to
glucose status.
ratios or combinations of certain health metrics may better capture the nuances of an individual’s health
profile, which could improve prediction accuracy for age groups.

Python Code df[’bmi_glucose_ratio’] = df[’bmxbmi’]/df[’lbxglu’]
df[’average_health_metric’] = (df[’bmxbmi’] + df[’lbxglu’] + df[’diq010’].replace(’yes’:1, ’no’:0))/3
df[’activity_glucose_ratio’] = df[’paq605’]/df[’lbxglu’]

AUC 76.75

Table 3: Linguistic Analysis of Reasoning Shift Induced by Rationale Alignment. In the NHANES task, examining
the features and their corresponding evidence generated using variables such as paq605, bmxbmi, lbxglu, and
diq010 reveals significant changes before and after DPO application.

achieves the highest performance on 7 datasets and
the second-highest on the remaining 7, surpass-
ing other recent models. Notably, it performs on
par with the 70B model and even outperforms it
in Ad-click and Cultivar task. This implies that
FeRG framework can deliver performance com-
parable to that of larger language models while
operating with fewer resource constraints and at

greater speed, as shown in Figure 4. Meanwhile,
relatively low AUC have at times been identi-
fied in FeatLLM, suggesting that a single linear
layer may be insufficient to capture the underlying
structure of the data. Conclusively, unlike prior re-
search models that rely on external APIs to gener-
ate features, our model functions locally, ensuring
data security in corporate environments.



4.3 Reasoning Shift Analysis
We study the effect of providing feedback on
generated reasoning by visualizing representations
of rationales through t-SNE, leading to linguistic
analysis of reasoning shift.

Linguistic Analysis of Response We conduct a
linguistic analysis of the feature generation ratio-
nale and the final code as shown in Table 3. For
NHANES task, FeRG-LLM and the model prior to
DPO both adopt the same four variables paq605,
bmxbmi, lbxglu, and diq010, yet yield entirely dis-
tinct outputs. This shift improve AUC from 75.31
to 76.75. We also confirm that the Python code
is derived directly from the rationale, indicating a
strong link between the explanation and final im-
plementation. More examples of FeRG-LLM’s re-
sponses are in Appendix B.

Figure 3: t-SNE Visualization of Reasoning Embed-
dings. Yellow points represent embeddings of reason-
ing generated by FeRG-LLM, while blue points corre-
spond to those generated without DPO.

Embedding Shift To explore the vector repre-
sentations of each response, we use OpenAI text-
embedding-3-small model. As shown in Figure 3,
the reason distribution without alignment (blue)
and that of FeRG-LLM (orange) exhibit distinct
shifts in reasoning patterns. After applying DPO
feedback, new content emerged where none had
existed before, while previously produced content
converged into a more narrowly confined space.

Ablation Study Table 4 presents the ablation re-
sults for FeRG-LLM across 14 datasets. In ev-
ery case, generating features based on rationales
contributes to superior performance compared to
their absence. On average, the model that imme-
diately produces Python code exhibits a 1.06%

lower AUC than its rationale-driven counterpart.
In addition, the effectiveness of alignment is
quantitatively confirmed with a 0.34% AUC
gain. While this improvement may seem modest,
the consistently better performance across most
datasets suggests that DPO meaningfully enhances
the expressiveness of the generated features.

Dataset w/o. Rationale w/o. DPO FeRG-LLM

Bank 93.69±0.44 93.40±0.10 93.88±0.51

Nhanes 75.84±0.39 75.73±0.34 76.23±0.40

Diabetes 82.25±0.51 82.25±0.29 82.43±0.34

Cultivar 76.57±2.36 79.94±5.24 78.34±2.74

Credit 83.93±0.59 84.11±0.38 85.07±0.67

Ethereum 96.76±0.50 96.78±0.92 97.03±0.60

Churn 93.04±0.45 93.03±0.30 93.22±0.14

Ad-click 76.22±9.72 80.50±12.65 81.55±8.64

Aging-npha 59.85±1.44 60.36±1.13 60.38±0.78

Infrared-t 87.12±0.28 87.20±0.23 87.42±0.27

Ilpd-indian 82.26±1.02 82.73±0.76 83.83±0.51

support2 85.66±0.10 85.65±0.11 85.76±0.16

heart-failure 89.63±0.40 89.79±0.19 90.17±0.33

glioma 91.58±0.12 91.53±0.07 91.75±0.30

Mean 83.89
(-1.06%)

84.50
(-0.34%)

84.79
(–)

Table 4: Ablations of each component of FeRG-LLM :
Rationle prompting and dpo alignment process.

4.4 Beyond Classification Task

Dataset XGBReg w/o. DPO FeRG-LLM

Bike 1408.80 1368.63 ± 9.50
(-2.85%)

1337.76 ± 35.35
(-5.04%)

Concrete 18.61 17.18 ± 0.66
(-7.68%)

16.47 ± 0.58
(-11.50%)

Parkinsons 3.04 2.69 ± 0.09
(-11.51%)

2.76 ± 0.05
(-9.21%)

Realestate 32.60 30.18 ± 0.94
(-7.42%)

29.26 ± 0.81
(-10.24%)

Table 5: Overall Mean MSE and Standard Deviation
for Regression Tasks Using FeRG-LLM.

We further highlight that our framework can
be extended to other tasks. Specifically we ap-
ply FeRG-LLM to regression datasets, details in
Appendix G, by switching the evaluation metric
from AUC to MSE and replacing XGBClassifier
with XGBRegressor. Table 5 presents a 5–10%
decrease in MSE across all datasets compared to
cases without feature engineering. Also, FeRG-
LLM generally outperforms a non-rationale base-
line on regression tasks—except for the Con-
crete—demonstrating the efficacy of DPO-driven



feedback. Hence, our approach is not limited to
classification tasks but has the potential to improve
performance over a wider spectrum of predictive
problems.

4.5 Inference Speed

In Section 4.2, FeRG-LLM and Llama 3.1 70B al-
ternate in achieving top performance. Therefore,
to further assess FeRG-LLM’s efficiency, we mea-
sure inference speed by generating 20 outputs for
each of the 12 datasets, resulting in a total of 240
runs. This approach ensures that the results are
relatively consistent across various datasets. The
Llama 3.1 70B model run on an AMD EPYC
7513 system with 503 GB of RAM in two config-
urations: four RTX A6000 GPUs (48GB VRAM
each) and two A100 GPUs (80GB VRAM each).
FeRG-LLM is tested on a university-shared Intel
Xeon Gold 6348 server with 16GB allocated per
user and a single RTX A6000. It is also tested on
RunPod with the same system specifications as the
70B model, using one RTX A6000 with 48 GB of
VRAM.

Figure 4: Inference time comparison of the 70B model
and FeRG-LLM using different configurations. The
70B model takes 83.71 seconds on four RTX A6000
and 34.10 seconds on two A100, while FeRG-LLM
completes inference in 16.4 seconds on a single RTX
A6000 and local feature generation in about 5 seconds
on a single RTX A6000.

On the cloud, the 70B model takes an average of
83.71 seconds in the A6000 setup and 34.10 sec-
onds in the A100 setup. But FeRG-LLM is much
faster, averaging 16.4 seconds and only 5.3 sec-
onds in non-cloud settings. In summary, given the

similar performance of both models and the results
from experiments conducted according to Algo-
rithm 1, where FeRG-LLM completed an average
of 7.4 runs per experiment compared to 5.7 for
the 70B model, our model achieves significantly
higher efficiency with fewer GPUs and faster in-
ference time.

5 Conclusion

In this research, we develop a novel framework,
FeRG-LLM, an automated feature engineering
language model that assists data scientists in dis-
covering features for building effective machine
learning models. By optimizing a small LLM (e.g.,
Llama 3.1 8B), FeRG-LLM can operate efficiently
even on a company’s limited infrastructure and en-
sure data security. This study explores LLM capa-
bilities by pushing their limits to assess their po-
tential in automating data-driven tasks.
The proposed framework offers significant practi-
cal utility in real-world industrial applications. It
is ideal for startups and teams with limited GPU
resources and workforce. Even large enterprises
can achieve automation and efficiency by apply-
ing our model to large-scale datasets with a large
number of variables. Also, our model can be eas-
ily adapted to diverse tasks by simply replacing
the ML prompts with appropriate tasks and evalu-
ation metric. This flexibility makes the framework
highly extensible and opens avenues for future re-
search in diverse machine learning contexts.

Limitation

A limitation of our study is the insufficient analy-
sis of the trade-off between computational over-
head and performance gains in our two-step
chain-of-thought and DPO training process. Al-
though DPO-driven feedback improves perfor-
mance compared to the model before DPO train-
ing, the additional training and inference costs are
not fully quantified. Future work should assess
these trade-offs to better establish the practical vi-
ability of our approach.
From a structural perspective, our model performs
two sequential calls to leverage the LLM’s Chain-
of-Thought capability. However, it currently gen-
erates features directly from the initial reasoning
output without further refinement. Additionally,
our investigation into the optimal step size remains
insufficient. These limitations warrant further ex-
ploration and improvement in future research.
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A Details : Data Generation from papers

We utilize OpenAI GPT-4o-mini to gather essential information from various papers related to tabular
data analysis. Figure 5 illustrates the specific prompt used for data extraction within these studies.
A total of 7 sections are extracted titled ‘Domain’, ‘Type’, ‘Available Features in dataframe’, ‘ML Prob-
lem’, ‘Thought for deriving new feature’, ‘New Features’, and ‘Python code.’, and the final Python code
is provided without any additional explanations or text, allowing it to be executed directly. Subsequently,
we make numerous revisions to enhance the quality of the data, ensuring its accuracy and reliability.

System Instruction:

You are a highly skilled machine learning engineer. You need to extract the content used
to create new derived features to improve actual machine learning performance based on the
information in the paper.

1. Read the provided text and organize it into the following sections:‘Domain’, ‘Type’,
‘Available Features in dataframe’, ‘ML Problem’, ‘Thought for deriving new feature’, ‘New
Features’, and ‘Python code.’

2. Since the focus is on discovering new features applicable to existing tabular data, if
there is no appropriate information for each section, refer to previous prompts or simply
answer "None" for that section.

3. Include the variable names and their descriptions from the tabular dataset in the
‘Available Features in dataframe’ section.

4. If new derived features are mathematically defined, ensure the variables in the formula
come from the ‘Available Features in dataframe’ section only.

5. Even if there is no information on new derived features in the text, if you can propose
features based solely on the ‘ML Problem’ and ‘Available Features in dataframe,’ you may do so
in the ’New Features’ section, even if it’s not from the paper.

6. Include the ideas, knowledge, and expertise used to create new derived features to improve
machine learning performance in the ‘Thought for deriving new feature’ section.

7. Assume the contents in ‘Available Features in dataframe’ are columns present in a DataFrame
‘df,’ and convert the formulas in ‘New Features’ into Python code. Respond with only the
Python code. It should be executable.

8. If there are multiple contexts or solutions, record them separately.

Please respond in English.

Figure 5: Data Generation Prompt Using the GPT API.



B More Example of Feature Engineering with FeRG-LLM

The results of FeRG-LLM’s feature engineering for Ethereum and the Cultivar task are presented in the
table below. As discussed in the main text the model identifies a rationale to guide the discovery of new
features and subsequently generates the final Python code based on this rationale.

System
Instruction

You are an automated ML engineer who writes Python code based on a given domain, present variables in a dataframe, and ML problems.
Whenever the sentence write down python code appears, immediately write Python code.

ML task
Prompt
(Ethereum)

[Domain] Blockchain [Type] classification

[Present variable in dataframe]
txhash: Unique Transaction Hash
blockheight: The block number in which the transaction was included
timestamp: The exact date and time when the transaction was processed
from: The sender’s Ethereum address
to: The receiver’s Ethereum address
value: The amount of Ether transferred in the transaction
Provide key ideas for creating new derived variables to improve the performance of the following ML problem using the given dataset.

[Machine Learning Problem] identify patterns and anomalies indicative of fraudulent activity.

FeRG-LLM
Rationale

1. definition: total amount transferred by a sender within a given time frame.
- aggregated values to assess sender-receiver behavior, which can help identify unusual patterns associated with fraud.
2. definition: count of distinct transactions initiated by a particular sender in a specific time frame.
- use of time-based features to uncover patterns over time and evaluate frequency and volume of transactions, allowing for better fraud
detection.
3. definition: total number of times a unique sender-receiver pair exchanged values across transactions
- utilize transaction volume and frequency data to identify abnormal flows indicative of potential scams.

Python code # 1. total transaction value sent by each sender over a certain period.
df[’totalvalue’] = df.groupby(’from’)[’value’].transform(’sum’)
# 2. count of transactions per sender within a specific time frame.
df[’count_transactions’] = df.groupby(’from’)[’from’].transform(’count’)
# 3. frequency of transaction for sender-receiver pairs.
df[’frequency_tx’] = df.groupby([’from’,’to’])[’from’].transform(’count’)

ML task
Prompt
(Cultivar)

[Domain] Agriculture [Type] classification

[Present variable in dataframe]
season: 1 or 2
cultivar: Cultivar names
repetition: 1, 2, 3 or 4
ph: plant height (cm), determined from the soil surface to the insertion of the last leaf using a millimeter ruler
ifp: insertion of the first pod (cm), determined from the soil surface to the insertion of the first vegetable
nlp: Number of stems (unit), through manual counting
ngp: Number of legumes per plant (unit), through manual counting
ngl: Number of grains per plant (unit), through manual counting
ns: Number of grains per pod (unit), through manual counting
mhg: Thousand seed weight (g), according to the methodology described in Brasil (2009)
Provide key ideas for creating new derived variables to improve the performance of the following ML problem using the given dataset.

[Machine Learning Problem] for predicting how high the grain yield of this soybean cultivar will be.

FeRG-LLM
Rationale

1. definition: average number of pods per plant considering the possible repetition of experiments for different seasons and cultivar
replications.
• purpose of average biomass measures: the various measurements related to plant size and development can be used to compute derived
metrics which might relate more closely to grain yield.
2. definition: variation in the number of grains produced per plant across different experimental replications which can highlight stability
and performance.
• purpose of pod-to-grain ratios: examining the relationship between the number of pods and grains could provide insights into the
efficiency of pod utilization, potentially revealing cultivar performance characteristics.

Python code df[’avgpp’] = (df[’ngp’].where(df[’repetition’] == 1).fillna(0) + df[’ngp’].where(df[’repetition’] == 2).fillna(0) +
df[’ngp’].where(df[’repetition’] == 3).fillna(0) + df[’ngp’].where(df[’repetition’] == 4).fillna(0)) / 4
df[’grv’] = df.groupby(’cultivar’)[’ngl’].transform(lambda x: ((x - x.mean())**2).mean())

Table 6: Example responses when Ethereum and Cultivar task are given into FeRG-LLM. Definitions are generated for each
inference, followed by the corresponding Python code for new features. Some responses that generate code include comments
indicated by "#" while others do not. In both cases the Python code can be executed immediately, ensuring that automation
works properly.



C All Experimental Results for CAAFE and FeatLLM

In CAAFE, variable selection is performed using TabPFN instead of XGBoost, and the final dataset
is fitted with XGBoost. As discussed in the main text, the model fails to fit properly on the Bank and
Ethereum datasets, which contain 45,000 and 254,973 samples, respectively. As a result, AUC and ACC
values could not be computed.

Dataset CAAFE+TabPFN

Bank NaN
Nhanes 75.01± 0.68

Diabetes 80.47± 1.11

Cultivar 71.43± 4.93

Credit 82.01± 0.91

Ethereum NaN
Churn 92.38± 0.39

Ad-click 63.85± 0.00

Aging-npha 56.40± 0.81

Infrared-t 86.04± 0.35

Ilpd-indian 80.53± 0.98

Support2 85.38± 0.05

Heart-failure 87.63± 2.23

Glioma 90.79± 0.30

Table 7: Performance results of the CAAFE+tabpfn model on various datasets.

When testing FeatLLM, we use a setup where FeatLLM generated features using 16 data points(shots)
or 64, and the linear layer is trained on 128 data points or the entire dataset.

Dataset All data (16 shots) All data (64 shots) 128 data points (16 shots) 128 data points (64 shots)

Bank 69.25±1.17 66.62±1.23 80.05±0.62 79.17±0.75
Nhanes 59.47±3.89 60.95±1.23 65.73±0.49 66.57±0.71

Diabetes 78.66±0.47 78.16±0.24 78.45±0.36 78.53±0.38
Cultivar 63.19±2.63 62.21±2.93 69.52±2.23 63.12±3.00
Credit 50.64±7.19 36.30±1.45 36.09±1.12 40.21±2.55

Ethereum 73.19±0.98 75.48±2.05 91.22±0.73 87.61±2.65
Aging_npha 58.52±1.22 59.16±0.75 57.47±1.34 56.03±0.76
Infrared_t 80.48±0.53 79.11±0.81 79.04±0.81 77.03±0.98

Churn 73.71±3.28 77.48±2.38 79.91±0.79 79.38±1.16
Ad_click 51.18±0.57 48.98±0.46 47.72±0.39 47.30±0.59

Ilpd_indian 82.61±1.17 81.74±0.81 80.67±0.71 81.13±0.69
Support2 56.70±7.96 55.74±7.99 47.31±7.68 47.42±4.53

Heart_failure 78.26±0.91 80.77±1.08 77.55±1.28 78.36±1.96
Glioma 70.13±5.57 70.59±5.98 73.51±3.28 65.59±6.87

Table 8: Performance results of the FeatLLM on the various setups.



D Training Setup and XGBoost Parameter Search

D.1 Training Setup
We detail our training configurations for both the supervised fine-tuning (SFT) and Direct Preference
Optimization (DPO) settings. For SFT, we use a batch size of 4 and train the model for 5 epochs with a
learning rate of 1× 10−4. Mixed precision training is performed using BF16, and LoRA is applied with
a rank of 8, an alpha of 16, and no dropout (0.0). For both SFT and DPO, we utilize a cosine learning
rate scheduler. In the case of DPO, the model is trained with a learning rate of 8 × 10−6 for 4 epochs,
and the β parameter is set to 0.1.

Parameter SFT DPO

Batch Size 4 4
Epochs 5 4
Learning Rate 1× 10−4 8× 10−6

Mixed Precision BF16 BF16
LoRA Rank 8 8
LoRA Alpha 16 16
LoRA Dropout 0.0 0.0
Scheduler Cosine Cosine
β – 0.1

Table 9: Training configurations for SFT and DPO with a cosine learning rate scheduler.

D.2 XGBoost Parameter Search
For fitting the XGBoost model, we conducted a grid search over the following parameter ranges:

Parameter Values

max_depth 3, 5, 7
learning_rate 0.01, 0.1
n_estimators 50, 100, 200
subsample 0.8, 1.0
colsample_bytree 0.8, 1.0

Table 10: Hyperparameter search space for XGBoost.



E Datasets for Feedback

These datasets contain information on target datasets for which features were generated using the super-
vised fine-tuned model. Based on the evaluation results, we utilized the final reject and chosen datasets
to create the training data used for DPO.

Dataset Size # Features Label Ratio(%) ML Problem

Default of credit
card clients 30000 23 77.9 \ 22.1

Predicting customer default payments in Taiwan by
comparing the predictive accuracy of the probabil-
ity of default across six data mining methods.

In vehicle coupon
recommendation 12684 23 56.8 \ 43.2

Predicting whether an individual will accept a rec-
ommended coupon under different driving scenar-
ios.

Online news
popularity 39644 58 85.2 \ 14.8

Predicting the social media popularity of Mashable
articles using a heterogeneous set of features col-
lected over a two-year period.

Online shoppers
purchasing

intention dataset
12330 17 84.5 \ 15.5 Predicting whether a session led to a purchase.

Polish companies
bankruptcy 43405 65 95.2 \ 4.8

Predicting bankruptcy of Polish companies based
on financial data, where bankrupt companies were
analyzed from 2000 to 2012 and operating compa-
nies were evaluated from 2007 to 2013.

Blood transfusion
service center 748 4 76.2 \ 23.8 Predicting whether a blood donor will donate blood

in March 2007 based on the donor’s historical data.

Iranian churn 3150 13 84.3 \ 15.7
Predicting customer churn in the telecom industry
based on user activity and subscription patterns over
a 12-month period.

Productivity
prediction of

garment
employees

1197 14 50.2 \ 49.8 Predicting the productivity of garment employees
based on various factors.

Table 11: This table provides descriptions of the datasets used for DPO Training. The reasons for preference based
on the AUC are ordered for each dataset.



F Evaluation Datasets for Classification

Dataset Size # Features Label Ratio(%) ML Problem

Bank 45,211 16 88.3 \ 11.7 Whether a customer will subscribe to a term deposit.

Nhanes 2,278 7 84.0 \ 16.0 Predicting the given person’s age group from the record.

Diabetes 768 8 65.1 \ 34.9
Predicting the presence of diabetes in an indi-
vidual. (https://kaggle.com/datasets/uciml/
pima-indians-diabetes-database)

Cultivar 320 10 50.0 \ 50.0 Predicting how high the grain yield of this soybean culti-
var will be.

Credit 1,548 18 88.7 \ 11.3

Predicting whether the applicant is approved or rejected.
(https://www.kaggle.com/datasets/
rohitudageri/credit-card-details?select=
Credit_card_label.csv)

Ethereum 254,973 6 93.9 \ 6.1

Identifing patterns and anomalies indicative of fraudulent
activity.
(https://www.kaggle.com/datasets/chaitya0623/
ethereum-transactions-for-fraud-detection)

Churn 4,250 20 85.9 \ 14.1

Predicting whether a customer is likely to
churn based on the other features. (https:
//www.kaggle.com/datasets/mustafakeser4/
bigquery-churn-dataset)

Ad-click 10,000 8 65.0 \ 35.0

Predicting whether a user will click on an on-
line ad based on their demographics, browsing be-
havior, the context of the ad’s display, and the
time of day. (https://www.kaggle.com/datasets/
marius2303/ad-click-prediction-dataset)

Aging-
npha 714 14 70.4 \ 29.6

Predicting the categorized number of doctors a patient
has visited based on their health status, sleep issues, and
demographic information.

Infrared-t 1,020 33 59.5 \ 40.5 Predicting the oral temperature using the environment in-
formation as well as the thermal image readings.

Ilpd-indian
liver

patient
dataset

583 10 71.4 \ 28.6

The prediction task is to determine whether a patient
suffers from liver disease based on the information
about several biochemical markers, including albumin
and other enzymes required for metabolism.

Support2 9,105 42 68.1 \ 31.9
The goal is to determine these patients’ 2- and 6-month
survival rates based on several physiologic, demograph-
ics, and disease severity information.

Heart-
failure 299 12 67.9 \ 32.1 Predicting whether a patient will die during the follow-up

period.

Glioma 839 23 58.0 \ 42.0
Predicting whether the glioma grade is classified as
l̈gg(̈lower grade glioma) or g̈bm(̈glioblastoma multi-
forme), where 0 represents lgg and 1 represents gbm.

Table 12: This table provides descriptions of the datasets used for experiments of feature engineering. These
datasets are intended for solving binary classification tasks.
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G Evaluation Datasets for Regression

Dataset Size # Features ML Problem

Bike 17379 13 Predicting count of total rental bikes including both casual and registered.
Concrete 1030 8 Predicting concrete compressive strength.

Parkinsons 5875 19 Predicting clinician’s total UPDRS score, linearly interpolated.
Realstate 414 6 Predicting house price of unit area.

Table 13: This table provides descriptions of the datasets used for experiments of feature engineering. These
datasets are intended for solving regression problems.
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